Accelerating Creator Audience Building through Centralized Exploration
Buket Baran, Guilherme Dinis Junior, Antonina Danylenko, Olayinka S. Folorunso, Gösta Forsum, Maksym Lefarov, Lucas Maystre, Yu Zhao
This tutorial article provides a review of key ideas and approaches proposed in 20 years of VI research, and to connect them to current practice. For more than a decade, VI systems suffered from the accuracy-scalability trade-off, with attempts to increase accuracy resulting in cumbersome, non-scalable systems. Recent years however have witnessed an increase in VI approaches based on deep learning systems that take a step toward bridging the accuracy-scalability gap, and we start seeing the possibility to deploy such systems in real-world applications. Although this trend positively influences the number of researchers and institutions working on VI, it may also result in obscuring the literature before the deep learning era. To appreciate years of novel ideas in VI and to facilitate building better systems, we believe that now may be the right time to review some of the successful ideas and applications proposed in VI literature and to connect them to current systems.
Buket Baran, Guilherme Dinis Junior, Antonina Danylenko, Olayinka S. Folorunso, Gösta Forsum, Maksym Lefarov, Lucas Maystre, Yu Zhao
Winstead Zhu, Md Iftekhar Tanveer, Yang Janet Liu, Seye Ojumu, Rosie Jones
Thomas McDonald, Lucas Maystre, Mounia Lalmas, Daniel Russo, Kamil Ciosek