Bootstrapping Query Suggestions in Spotify’s Instant Search System

Abstract

Instant search systems present results to the user at every keystroke. This type of search system works best when the query ambiguity is low, the catalog is limited, and users know what they are looking for. However, Spotify’s catalog is large and diverse, leading some users to struggle when formulating search intents. Query suggestions can be a powerful tool that helps users to express intents and explore content from the long-tail of the catalog. In this paper, we explain how we introduce query suggestions in Spotify’s instant search system–a system that connects hundreds of millions of users with billions of items in our audio catalog. Specifically, we describe how we: (1) generate query suggestions from instant search logs, which largely contains in-complete prefix queries that cannot be directly applied as suggestions; (2) experiment with the generated suggestions in a specific UI feature, Related Searches; and (3) develop new metrics to measure whether the feature helps users to express search intent and formulate exploratory queries

Related

September 2023 | RecSys

Accelerating Creator Audience Building through Centralized Exploration

Buket Baran, Guilherme Dinis Junior, Antonina Danylenko, Olayinka S. Folorunso, Gösta Forsum, Maksym Lefarov, Lucas Maystre, Yu Zhao

July 2023 | SIGIR

Hear Me Out: A Study on the Use of the Voice Modality for Crowdsourced Relevance Assessments

Nirmal Roy, Agathe Balayn, David Maxwell, Claudia Hauff.

July 2023 | SIGIR

When the Music Stops: Tip-of-the-Tongue Retrieval for Music

Samarth Bhargav, Anne Schuth, Claudia Hauff