Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions


Users of music streaming, video streaming, news recommendation, and e-commerce services often engage with content in a sequential manner. Providing and evaluating good sequences of recommendations is therefore a central problem for these services. Prior reweighting-based counterfactual evaluation methods either suffer from high variance or make strong independence assumptions about rewards. We propose a new counterfactual estimator that allows for sequential interactions in the rewards with lower variance in an asymptotically unbiased manner. Our method uses graphical assumptions about the causal relationships of the slate to reweight the rewards in the logging policy in a way that approximates the expected sum of rewards under the target policy. Extensive experiments in simulation and on a live recommender system show that our approach outperforms existing methods in terms of bias and data eciency for the sequential track recommendations problem.


December 2020 | NeuRIPS

Model Selection for Production System via Automated Online Experiments

Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Benjamin Carterette, Mounia Lalmas

October 2020 | CIKM

Query Understanding for Surfacing Under-served Music Content

Federico Tomasi, Rishabh Mehrotra, Aasish Pappu, Judith Bütepage, Brian Brost, Hugo Galvão, Mounia Lalmas

September 2020 | RecSys

Inferring the Causal Impact of New Track Releases on Music Recommendation Platforms through Counterfactual Predictions

Rishabh Mehrotra, Prasanta Bhattacharya, Mounia Lalmas