Deep Unsupervised Drum Transcription


We introduce DrummerNet, a drum transcription system that is trained in an unsupervised manner. DrummerNet does not require any ground-truth transcription and, with the data-scalability of deep neural networks, learns from a large unlabeled dataset. In DrummerNet, the target drum signal is first passed to a (trainable) transcriber, then reconstructed in a (fixed) synthesizer according to the transcription estimate. By training the system to minimize the distance between the input and the output audio signals, the transcriber learns to transcribe without ground truth transcription. Our experiment shows that DrummerNet performs favorably compared to many other recent drum transcription systems, both supervised and unsupervised.


May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou

May 2024 | The Web Conference (GFM workshop)

Towards Graph Foundation Models for Personalization

Andreas Damianou, Francesco Fabbri, Paul Gigioli, Marco De Nadai, Alice Wang, Enrico Palumbo, Mounia Lalmas

April 2024 | ICLR

In-context Exploration-Exploitation for Reinforcement Learning

Zhenwen Dai, Federico Tomasi, Sina Ghiassian