Deriving User- and Content-specific Rewards for Contextual Bandits

Abstract

Bandit algorithms have gained increased attention in recommender systems, as they provide effective and scalable recommendations. These algorithms use reward functions, usually based on a numeric variable such as click-through rates, as the basis for optimization. On a popular music streaming service, a contextual bandit algo- rithm is used to decide which content to recommend to users, where the reward function is a binarization of a numeric variable that de- fines success based on a static threshold of user streaming time: 1 if the user streamed for at least 30 seconds and 0 otherwise. We explore alternative methods to provide a more informed reward function, based on the assumptions that streaming time distribu- tion heavily depends on the type of user and the type of content being streamed. To automatically extract user and content groups from streaming data, we employ “co-clustering”, an unsupervised learning technique to simultaneously extract clusters of rows and columns from a co-occurrence matrix. The streaming distributions within the co-clusters are then used to define rewards specific to each co-cluster. Our proposed co-clustered based reward functions lead to improvement of over 25% in expected stream rate, compared to the standard binarized rewards.

Related

November 2023 | ACM TORS

Unbiased Identification of Broadly Appealing Content Using a Pure Exploration Infinitely-Armed Bandit Strategy

Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, Javed Aslam

October 2023 | CIKM

Exploiting Sequential Music Preferences via Optimisation-Based Sequencing

Dmitrii Moor, Yi Yuan, Rishabh Mehrotra, Zhenwen Dai, Mounia Lalmas

October 2023 | CIKM

Graph Learning for Exploratory Query Suggestions in an Instant Search System

Enrico Palumbo, Andreas Damianou, Alice Wang, Alva Liu, Ghazal Fazelnia, Francesco Fabbri, Rui Ferreira, Fabrizio Silvestri, Hugues Bouchard, Claudia Hauff, Mounia Lalmas, Ben Carterette, Praveen Chandar, David Nyhan