Enabling Goal-Focused Exploration of Podcasts in Interactive Recommender Systems


Content recommender systems often rely on modeling users’ past behavioral data to provide personalized recommendations – a practice that works well for suggesting more of the same and for media that require little time investment from users, such as music tracks. However, this approach can be further optimized for media where the user investment is higher, such as podcasts, because there is a broader space of user goals that might not be captured by the implicit signals of their past behavior. Allowing users to directly specify their goals might help narrow the space of possible recommendations. Thus, in this paper, we explore how we can enable goal-focused exploration in recommender systems by leveraging explicit input from users about their personal goals. Using podcast consumption as an example use-case, and informed by a large-scale survey (N=68k), we developed GoalPods, an interactive prototype that allows users to set personal goals and build playlists of podcast episode recommendations to meet those goals. We evaluated GoalPods with 14 participants where participants set a goal and spent a week listening to the episode playlist created for that goal. From the study, we identified two types of user goals: low-involvement (e.g. “combat boredom”) and high-involvement (e.g. “learn something new”) goals. Users found it easy to identify relevant recommendations for low-involvement goals, but they needed more structure and support to set high-involvement goals. By anchoring users on their personal goals to explore recommendations, GoalPods (and goal-focused podcast consumption) led to insightful content discovery outside the users’ filter bubbles. Based on our findings, we discuss opportunities for designing recommender systems that guide exploration via interactive goal-setting as well as implications for providing better recommendations by accounting for users’ personal goals.


November 2023 | ACM TORS

Unbiased Identification of Broadly Appealing Content Using a Pure Exploration Infinitely-Armed Bandit Strategy

Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, Javed Aslam

October 2023 | CIKM

Exploiting Sequential Music Preferences via Optimisation-Based Sequencing

Dmitrii Moor, Yi Yuan, Rishabh Mehrotra, Zhenwen Dai, Mounia Lalmas

October 2023 | CIKM

Graph Learning for Exploratory Query Suggestions in an Instant Search System

Enrico Palumbo, Andreas Damianou, Alice Wang, Alva Liu, Ghazal Fazelnia, Francesco Fabbri, Rui Ferreira, Fabrizio Silvestri, Hugues Bouchard, Claudia Hauff, Mounia Lalmas, Ben Carterette, Praveen Chandar, David Nyhan