Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding


Understanding and quantifying cause and effect relationships is an important problem in many domains. The generally-agreed standard solution to this problem is to perform a randomised controlled trial. However, even when randomised controlled trials can be performed, they usually have relatively short duration’s due to cost considerations. This makes learning long-term causal effects a very challenging task in practice, since the long-term outcome is only observed after a long delay. In this paper, we study the identification and estimation of long-term treatment effects when both experimental and observational data are available. Previous work provided an estimation strategy to determine long-term causal effects from such data regimes. However, this strategy only works if one assumes there are no unobserved confounders in the observational data. In this paper, we specifically address the challenging case where unmeasured confounders are present in the observational data. Our long-term causal effect estimator is obtained by combining regression residuals with short-term experimental outcomes in a specific manner to create an instrumental variable, which is then used to quantify the long-term causal effect through instrumental variable regression. We prove this estimator is unbiased, and analytically study its variance. Finally, we empirically test our approach on synthetic data, as well as real-data from the International Stroke Trial.


May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou

May 2024 | The Web Conference (GFM workshop)

Towards Graph Foundation Models for Personalization

Andreas Damianou, Francesco Fabbri, Paul Gigioli, Marco De Nadai, Alice Wang, Enrico Palumbo, Mounia Lalmas

April 2024 | ICLR

In-context Exploration-Exploitation for Reinforcement Learning

Zhenwen Dai, Federico Tomasi, Sina Ghiassian