Explore, Exploit, Explain: Personalizing Explainable Recommendations with Bandits

Abstract

The multi-armed bandit is an important framework for balancing exploration with exploitation in recommendation. Exploitation recommends content (e.g., products, movies, music playlists) with the highest predicted user engagement and has traditionally been the focus of recommender systems. Exploration recommends content with uncertain predicted user engagement for the purpose of gathering more information. The importance of exploration has been recognized in recent years, particularly in settings with new users, new items, non-stationary preferences and attributes. In parallel, explaining recommendations (“recsplanations”) is crucial if users are to understand their recommendations. Existing work has looked at bandits and explanations independently. We provide the first method that combines both in a principled manner. In particular, our method is able to jointly (1) learn which explanations each user responds to; (2) learn the best content to recommend for each user; and (3) balance exploration with exploitation to deal with uncertainty. Experiments with historical log data and tests with live production traffic in a large-scale music recommendation service show a significant improvement in user engagement.

Related

November 2022 | NeurIPS

Society of Agents: Regrets Bounds of Concurrent Thompson Sampling

Yan Chen, Perry Dong, Qinxun Bai, Maria Dimakopoulou, Wei Xu, Zhengyuan Zhou

November 2022 | NeurIPS

Temporally-Consistent Survival Analysis

Lucas Maystre, Daniel Russo

November 2022 | NeurIPS

Disentangling Causal Effects from Sets of Interventions in the Presence of Unobserved Confounders

Olivier Jeunen, Ciarán M. Gilligan-Lee, Rishabh Mehrotra, Mounia Lalmas