Explore, Exploit, Explain: Personalizing Explainable Recommendations with Bandits

Abstract

The multi-armed bandit is an important framework for balancing exploration with exploitation in recommendation. Exploitation recommends content (e.g., products, movies, music playlists) with the highest predicted user engagement and has traditionally been the focus of recommender systems. Exploration recommends content with uncertain predicted user engagement for the purpose of gathering more information. The importance of exploration has been recognized in recent years, particularly in settings with new users, new items, non-stationary preferences and attributes. In parallel, explaining recommendations (“recsplanations”) is crucial if users are to understand their recommendations. Existing work has looked at bandits and explanations independently. We provide the first method that combines both in a principled manner. In particular, our method is able to jointly (1) learn which explanations each user responds to; (2) learn the best content to recommend for each user; and (3) balance exploration with exploitation to deal with uncertainty. Experiments with historical log data and tests with live production traffic in a large-scale music recommendation service show a significant improvement in user engagement.

Related

April 2022 | The Web Conference (WWW)

Sequential Recommendation via Stochastic Self-Attention

Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, Philip S. Yu

April 2022 | The Web Conference (WWW)

Using Survival Models to Estimate Long-Term Engagement in Online Experiments

Praveen Chandar, Brian St. Thomas, Lucas Maystre, Vijay Pappu, Roberto Sanchis-Ojeda, Tiffany Wu, Ben Carterette, Mounia Lalmas, Tony Jebara

April 2022 | The Web Conference (WWW)

Choice of Implicit Signal Matters: Accounting for User Aspirations in Podcast Recommendations

Zahra Nazari, Praveen Chandar, Ghazal Fazelnia, Catie Edrwards, Ben Carterette, Mounia Lalmas