Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Abstract

Variational autoencoders are a versatile class of deep latent variable models. They learn expressive latent representations of high dimensional data. However, the latent variance is not a reliable estimate of how uncertain the model is about a given input point. We address this issue by introducing a sparse Gaussian process encoder. The Gaussian process leads to more reliable uncertainty estimates in the latent space. We investigate the implications of replacing the neural network encoder with a Gaussian process in light of recent research. We then demonstrate how the Gaussian Process encoder generates reliable uncertainty estimates while maintaining good likelihood estimates on a range of anomaly detection problems. Finally, we investigate the sensitivity to noise in the training data and show how an appropriate choice of Gaussian process kernel can lead to automatic relevance determination.

Related

October 2024 | CIKM

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

A. Ghazimatin, E. Garmash, G. Penha, K. Sheets, M. Achenbach, O. Semerci, R. Galvez, M. Tannenberg, S. Mantravadi, D. Narayanan, O. Kalaydzhyan, D. Cole, B. Carterette, A. Clifton, P. N. Bennett, C. Hauff, M. Lalmas-Roelleke

October 2024 | Journal of Online Trust & Safety

Algorithmic Impact Assessments at Scale: Practitioners’ Challenges and Needs

Amar Ashar, Karim Ginena, Maria Cipollone, Renata Barreto, Henriette Cramer

May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou