Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Abstract

Variational autoencoders are a versatile class of deep latent variable models. They learn expressive latent representations of high dimensional data. However, the latent variance is not a reliable estimate of how uncertain the model is about a given input point. We address this issue by introducing a sparse Gaussian process encoder. The Gaussian process leads to more reliable uncertainty estimates in the latent space. We investigate the implications of replacing the neural network encoder with a Gaussian process in light of recent research. We then demonstrate how the Gaussian Process encoder generates reliable uncertainty estimates while maintaining good likelihood estimates on a range of anomaly detection problems. Finally, we investigate the sensitivity to noise in the training data and show how an appropriate choice of Gaussian process kernel can lead to automatic relevance determination.

Related

November 2023 | ACM TORS

Unbiased Identification of Broadly Appealing Content Using a Pure Exploration Infinitely-Armed Bandit Strategy

Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, Javed Aslam

October 2023 | CIKM

Graph Learning for Exploratory Query Suggestions in an Instant Search System

Enrico Palumbo, Andreas Damianou, Alice Wang, Alva Liu, Ghazal Fazelnia, Francesco Fabbri, Rui Ferreira, Fabrizio Silvestri, Hugues Bouchard, Claudia Hauff, Mounia Lalmas, Ben Carterette, Praveen Chandar, David Nyhan

September 2023 | CLEF

Cem Mil Podcasts: A Spoken Portuguese Document Corpus For Multi-modal, Multi-lingual and Multi-Dialect Information Access Research

Ekaterina Garmash, Edgar Tanaka, Ann Clifton, Joana Correia, Sharmistha Jat, Winstead Zhu, Rosie Jones, Jussi Karlgren