Investigating the Impact of Audio States & Transitions for Track Sequencing in Music Streaming Sessions


Music streaming is inherently sequential in nature, with track sequence information playing a key role in user satisfaction with recommended music. In this work, we investigate the role audio characteristics of music content play in understanding music streaming sessions. Focusing on 18 audio attributes (e.g. dancability, acousticness, energy), we formulate audio transitioning in a session as a multiple changepoint detection problem, and extract latent states of different audio attributes within each session. Based on insights from large scale music streaming data from a popular music streaming platform, we investigate questions around the extent to which audio characteristics fluctuate within streaming sessions, the heterogeneity across different audio attributes and their impact on user satisfaction. Furthermore, we demonstrate the promise of such audio-based characterizing of sessions in better sequencing tracks in a session, and highlight the potential gains in user satisfaction on offer. We discuss implications on the design of track sequencing models, and identify important prediction tasks to further research on the topic.


June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

May 2023 | TheWebConf

Improving Content Retrievability in Search with Controllable Query Generation

Gustavo Penha, Enrico Palumbo, Maryam Aziz, Alice Wang, and Hugues Bouchard

March 2023 | Frontier on Big Data: Recommender Systems

A Survey on Multi-objective Recommender Systems

Dietmar Jannach and Himan Abdollahpouri