Joint Singing Voice Separation and F0 Estimation with Deep U-Net Architectures

Abstract

Vocal source separation and fundamental frequency estimation in music are tightly related tasks. The outputs of vocal source separation systems have previously been used as inputs to vocal fundamental frequency estimation systems; conversely, vocal fundamental frequency has been used as side information to improve vocal source separation. In this paper, we propose several different approaches for jointly separating vocals and estimating fundamental frequency. We show that joint learning is advantageous for these tasks, and that a stacked architecture which first performs vocal separation outperforms the other configurations considered. Furthermore, the best joint model achieves state-of-the-art results for vocal-f0 estimation on the iKala dataset. Finally, we highlight the importance of performing polyphonic, rather than monophonic vocal-f0 estimation for many real-world cases.

Related

October 2021 | CSCW

Let Me Ask You This: How Can a Voice Assistant Elicit Explicit User Feedback?

Ziang Xiao, Sarah Mennicken, Bernd Huber, Adam Shonkoff, Jennifer Thom

September 2021 | ECML-PKDD

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith Bütepage, Lucas Maystre, Mounia Lalmas

May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer