Joint Singing Voice Separation and F0 Estimation with Deep U-Net Architectures

Abstract

Vocal source separation and fundamental frequency estimation in music are tightly related tasks. The outputs of vocal source separation systems have previously been used as inputs to vocal fundamental frequency estimation systems; conversely, vocal fundamental frequency has been used as side information to improve vocal source separation. In this paper, we propose several different approaches for jointly separating vocals and estimating fundamental frequency. We show that joint learning is advantageous for these tasks, and that a stacked architecture which first performs vocal separation outperforms the other configurations considered. Furthermore, the best joint model achieves state-of-the-art results for vocal-f0 estimation on the iKala dataset. Finally, we highlight the importance of performing polyphonic, rather than monophonic vocal-f0 estimation for many real-world cases.

Related

December 2020 | NeuRIPS

Model Selection for Production System via Automated Online Experiments

Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Benjamin Carterette, Mounia Lalmas

October 2020 | CIKM

Query Understanding for Surfacing Under-served Music Content

Federico Tomasi, Rishabh Mehrotra, Aasish Pappu, Judith Bütepage, Brian Brost, Hugo Galvão, Mounia Lalmas

September 2020 | RecSys

Contextual and Sequential User Embeddings for Large-Scale Music Recommendation

Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, Mounia Lalmas