Joint Singing Voice Separation and F0 Estimation with Deep U-Net Architectures

Abstract

Vocal source separation and fundamental frequency estimation in music are tightly related tasks. The outputs of vocal source separation systems have previously been used as inputs to vocal fundamental frequency estimation systems; conversely, vocal fundamental frequency has been used as side information to improve vocal source separation. In this paper, we propose several different approaches for jointly separating vocals and estimating fundamental frequency. We show that joint learning is advantageous for these tasks, and that a stacked architecture which first performs vocal separation outperforms the other configurations considered. Furthermore, the best joint model achieves state-of-the-art results for vocal-f0 estimation on the iKala dataset. Finally, we highlight the importance of performing polyphonic, rather than monophonic vocal-f0 estimation for many real-world cases.

Related

April 2021 | The Web Conference

Where To Next? A Dynamic Model of User Preferences

Francesco Sanna Passino, Lucas Maystre, Dmitrii Moor, Ashton Anderson, Mounia Lalmas

April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas

March 2021 | WSDM

Shifting Consumption towards Diverse Content on Music Streaming Platforms

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre, Mounia Lalmas