Joint Singing Voice Separation and F0 Estimation with Deep U-Net Architectures


Vocal source separation and fundamental frequency estimation in music are tightly related tasks. The outputs of vocal source separation systems have previously been used as inputs to vocal fundamental frequency estimation systems; conversely, vocal fundamental frequency has been used as side information to improve vocal source separation. In this paper, we propose several different approaches for jointly separating vocals and estimating fundamental frequency. We show that joint learning is advantageous for these tasks, and that a stacked architecture which first performs vocal separation outperforms the other configurations considered. Furthermore, the best joint model achieves state-of-the-art results for vocal-f0 estimation on the iKala dataset. Finally, we highlight the importance of performing polyphonic, rather than monophonic vocal-f0 estimation for many real-world cases.


August 2020 | KDD

Bandit based Optimization of Multiple Objectives on a Music Streaming Platform

Rishabh Mehrotra, Niannan Xue, Mounia Lalmas

August 2020 | Uncertainty in Artificial Intelligence (UAI)

Stochastic Variational Inference for Dynamic Correlated Topic Models

Federico Tomasi, Praveen Chandar, Gal Levy-Fix, Mounia Lalmas, Zhenwen Dai