Leveraging Semantic Information to Facilitate the Discovery of Underserved Podcasts

Abstract

Podcasts are a popular medium for rapid dissemination of information, entertainment, and casual conversations. Content aggregators are taking an increased interest in recommending podcasts to listeners to help them build larger audiences. With many podcasts released every day, many podcasts that would be of interest to listeners remain underserved by these recommendation systems. In this paper, we study variables related to podcast appeal to listeners selected at random in a large online study, in a production setting, involving more than five million recommendations. We present the results of two observational studies, which suggests that underserved podcast have the potential to grow their audiences. To mitigate the rich-get-richer effect, we propose leveraging semantic information, via means of knowledge graphs, to recommend underserved podcasts to listeners. Finally, we conduct empirical experiments that show our method is effective at recommending underserved podcasts, in comparison to baseline methods that rely on listening behavior.

Related

April 2025 | 2024 IEEE Spoken Language Technology Workshop (SLT)

Classification Of Spontaneous And Scripted Speech For Multilingual Audio

Shahar Elisha, Andrew McDowell, Mariano Beguerisse-Díaz, Emmanouil Benetos

November 2024 | EPJ Data Science

Consumption-based approaches in proactive detection for content moderation

Shahar Elisha, John N. Pougué-Biyong, Mariano Beguerisse-Díaz

November 2024 | SIAM Journal on Mathematics of Data Science

Topological Fingerprints for Audio Identification

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, Mariano Beguerisse-Díaz