Leveraging Semantic Information to Facilitate the Discovery of Underserved Podcasts

Abstract

Podcasts are a popular medium for rapid dissemination of information, entertainment, and casual conversations. Content aggregators are taking an increased interest in recommending podcasts to listeners to help them build larger audiences. With many podcasts released every day, many podcasts that would be of interest to listeners remain underserved by these recommendation systems. In this paper, we study variables related to podcast appeal to listeners selected at random in a large online study, in a production setting, involving more than five million recommendations. We present the results of two observational studies, which suggests that underserved podcast have the potential to grow their audiences. To mitigate the rich-get-richer effect, we propose leveraging semantic information, via means of knowledge graphs, to recommend underserved podcasts to listeners. Finally, we conduct empirical experiments that show our method is effective at recommending underserved podcasts, in comparison to baseline methods that rely on listening behavior.

Related

April 2022 | The Web Conference (WWW)

Sequential Recommendation via Stochastic Self-Attention

Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, Philip S. Yu

April 2022 | The Web Conference (WWW)

Using Survival Models to Estimate Long-Term Engagement in Online Experiments

Praveen Chandar, Brian St. Thomas, Lucas Maystre, Vijay Pappu, Roberto Sanchis-Ojeda, Tiffany Wu, Ben Carterette, Mounia Lalmas, Tony Jebara

April 2022 | The Web Conference (WWW)

Choice of Implicit Signal Matters: Accounting for User Aspirations in Podcast Recommendations

Zahra Nazari, Praveen Chandar, Ghazal Fazelnia, Catie Edrwards, Ben Carterette, Mounia Lalmas