Leveraging Semantic Information to Facilitate the Discovery of Underserved Podcasts

Abstract

Podcasts are a popular medium for rapid dissemination of information, entertainment, and casual conversations. Content aggregators are taking an increased interest in recommending podcasts to listeners to help them build larger audiences. With many podcasts released every day, many podcasts that would be of interest to listeners remain underserved by these recommendation systems. In this paper, we study variables related to podcast appeal to listeners selected at random in a large online study, in a production setting, involving more than five million recommendations. We present the results of two observational studies, which suggests that underserved podcast have the potential to grow their audiences. To mitigate the rich-get-richer effect, we propose leveraging semantic information, via means of knowledge graphs, to recommend underserved podcasts to listeners. Finally, we conduct empirical experiments that show our method is effective at recommending underserved podcasts, in comparison to baseline methods that rely on listening behavior.

Related

May 2024 | Yijun Tian, Maryam Aziz, Alice Wang, Enrico Palumbo and Hugues Bouchard

Structural Podcast Content Modeling with Generalizability

Yijun Tian, Maryam Aziz, Alice Wang, Enrico Palumbo and Hugues Bouchard

May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou

May 2024 | The Web Conference (GFM workshop)

Towards Graph Foundation Models for Personalization

Andreas Damianou, Francesco Fabbri, Paul Gigioli, Marco De Nadai, Alice Wang, Enrico Palumbo, Mounia Lalmas