Leveraging Semantic Information to Facilitate the Discovery of Underserved Podcasts

Abstract

Podcasts are a popular medium for rapid dissemination of information, entertainment, and casual conversations. Content aggregators are taking an increased interest in recommending podcasts to listeners to help them build larger audiences. With many podcasts released every day, many podcasts that would be of interest to listeners remain underserved by these recommendation systems. In this paper, we study variables related to podcast appeal to listeners selected at random in a large online study, in a production setting, involving more than five million recommendations. We present the results of two observational studies, which suggests that underserved podcast have the potential to grow their audiences. To mitigate the rich-get-richer effect, we propose leveraging semantic information, via means of knowledge graphs, to recommend underserved podcasts to listeners. Finally, we conduct empirical experiments that show our method is effective at recommending underserved podcasts, in comparison to baseline methods that rely on listening behavior.

Related

September 2022 | RecSys

Identifying New Podcasts with High General Appeal Using a Pure Exploration Infinitely-Armed Bandit Strategy

Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, Javed Aslam

September 2022 | Interspeech

Unsupervised Speaker Diarization that is Agnostic to Language Overlap Aware and Free of Tuning

M Iftekhar Tanveer, Diego Casabuena, Jussi Karlgren, Rosie Jones