Mostra: A Flexible Balancing Framework to Trade-off User, Artist and Platform Objectives for Music Sequencing

Abstract

We consider the task of sequencing tracks on music streaming platorms where the goal is to maximise not only user satisfaction, but also artist- and platform-centric objectives, needed to ensure long-term health and sustainability of the platform. Grounding the work across four objectives: Sat, Discovery, Exposure and Boost, we highlight the need and the potential to trade-off performance across these objectives, and propose Mostra, a Set Transformer-based encoder-decoder architecture equipped with submodular multi-objective beam search decoding. The proposed model affords system designers the power to balance multiple goals, and dynamically control the impact on one objective to satisfy other objectives.Through extensive experiments on data from a large-scale music streaming platform, we present insights on the trade-offs that exist across different objectives, and demonstrate that the proposed framework leads to a superior, just-in-time balancing across the various metrics of interest.

Related

November 2024 | EPJ Data Science

Consumption-based approaches in proactive detection for content moderation

Shahar Elisha, John N. Pougué-Biyong, Mariano Beguerisse-Díaz

November 2024 | SIAM Journal on Mathematics of Data Science

Topological Fingerprints for Audio Identification

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, Mariano Beguerisse-Díaz

October 2024 | Journal of Online Trust & Safety

Algorithmic Impact Assessments at Scale: Practitioners’ Challenges and Needs

Amar Ashar, Karim Ginena, Maria Cipollone, Renata Barreto, Henriette Cramer