Multistate analysis with infinite mixtures of Markov chains


Driven by applications in clinical medicine and business, we address the problem of modeling trajectories over multiple states. We build on well-known methods from survival analysis and introduce a family of sequence models based on localized Bayesian Markov chains. We develop inference and prediction algorithms, and we apply the model to real-world data, demonstrating favorable empirical results. Our approach provides a practical and effective alternative to plain Markov chains and to existing (finite) mixture models; It retains the simplicity and computational benefits of the former while matching or exceeding the predictive performance of the latter.


November 2023 | ACM TORS

Unbiased Identification of Broadly Appealing Content Using a Pure Exploration Infinitely-Armed Bandit Strategy

Maryam Aziz, Jesse Anderton, Kevin Jamieson, Alice Wang, Hugues Bouchard, Javed Aslam

October 2023 | CIKM

Exploiting Sequential Music Preferences via Optimisation-Based Sequencing

Dmitrii Moor, Yi Yuan, Rishabh Mehrotra, Zhenwen Dai, Mounia Lalmas

October 2023 | CIKM

Graph Learning for Exploratory Query Suggestions in an Instant Search System

Enrico Palumbo, Andreas Damianou, Alice Wang, Alva Liu, Ghazal Fazelnia, Francesco Fabbri, Rui Ferreira, Fabrizio Silvestri, Hugues Bouchard, Claudia Hauff, Mounia Lalmas, Ben Carterette, Praveen Chandar, David Nyhan