Multistate analysis with infinite mixtures of Markov chains

Abstract

Driven by applications in clinical medicine and business, we address the problem of modeling trajectories over multiple states. We build on well-known methods from survival analysis and introduce a family of sequence models based on localized Bayesian Markov chains. We develop inference and prediction algorithms, and we apply the model to real-world data, demonstrating favorable empirical results. Our approach provides a practical and effective alternative to plain Markov chains and to existing (finite) mixture models; It retains the simplicity and computational benefits of the former while matching or exceeding the predictive performance of the latter.

Related

September 2023 | RecSys

Accelerating Creator Audience Building through Centralized Exploration

Buket Baran, Guilherme Dinis Junior, Antonina Danylenko, Olayinka S. Folorunso, Gösta Forsum, Maksym Lefarov, Lucas Maystre, Yu Zhao

August 2023 | Interspeech

Lightweight and Efficient Spoken Language Identification of Long-form Audio

Winstead Zhu, Md Iftekhar Tanveer, Yang Janet Liu, Seye Ojumu, Rosie Jones

July 2023 | KDD

Impatient Bandits: Optimizing for the Long-Term Without Delay

Thomas McDonald, Lucas Maystre, Mounia Lalmas, Daniel Russo, Kamil Ciosek