Neural Music Synthesis for Flexible Timbre Control

Abstract

The recent success of raw audio waveform synthesis models like WaveNet motivates a new approach for music synthesis, in which the entire process — creating audio samples from a score and instrument information — is modeled using generative neural networks. This paper describes a neural music synthesis model with flexible timbre controls, which consists of a recurrent neural network conditioned on a learned instrument embedding followed by a WaveNet vocoder. The learned embedding space successfully captures the diverse variations in timbres within a large dataset and enables timbre control and morphing by interpolating between instruments in the embedding space. The synthesis quality is evaluated both numerically and perceptually, and an interactive web demo is presented.

Related

April 2021 | The Web Conference

Where To Next? A Dynamic Model of User Preferences

Francesco Sanna Passino, Lucas Maystre, Dmitrii Moor, Ashton Anderson, Mounia Lalmas

April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas

March 2021 | WSDM

Shifting Consumption towards Diverse Content on Music Streaming Platforms

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre, Mounia Lalmas