Neural Music Synthesis for Flexible Timbre Control


The recent success of raw audio waveform synthesis models like WaveNet motivates a new approach for music synthesis, in which the entire process — creating audio samples from a score and instrument information — is modeled using generative neural networks. This paper describes a neural music synthesis model with flexible timbre controls, which consists of a recurrent neural network conditioned on a learned instrument embedding followed by a WaveNet vocoder. The learned embedding space successfully captures the diverse variations in timbres within a large dataset and enables timbre control and morphing by interpolating between instruments in the embedding space. The synthesis quality is evaluated both numerically and perceptually, and an interactive web demo is presented.


September 2020 | RecSys

Contextual and Sequential User Embeddings for Large-Scale Music Recommendation

Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, Mounia Lalmas

August 2020 | KDD

Bandit based Optimization of Multiple Objectives on a Music Streaming Platform

Rishabh Mehrotra, Niannan Xue, Mounia Lalmas