OpenMIC-2018: an Open Dataset for Multiple Instrument Recognition

Abstract

Identification of instruments in polyphonic recordings is a challenging, but fundamental problem in music information retrieval. While there has been significant progress in developing predictive models for this and related classification tasks, we as a community lack a common data-set which is large, freely available, diverse, and representative of naturally occurring recordings. This limits our ability to measure the efficacy of computational models. This article describes the construction of a new, open data-set for multi-instrument recognition. The dataset contains 20,000 examples of Creative Commons-licensed music available on the Free Music Archive. Each example is a 10-second excerpt which has been partially labeled for the presence or absence of 20 instrument classes by annotators on a crowd-sourcing platform. We describe in detail how the instrument taxonomy was constructed, how the dataset was sampled and annotated, and compare its characteristics to similar, previous data-sets. Finally, we present experimental results and baseline model performance to motivate future work

Related

April 2025 | 2024 IEEE Spoken Language Technology Workshop (SLT)

Classification Of Spontaneous And Scripted Speech For Multilingual Audio

Shahar Elisha, Andrew McDowell, Mariano Beguerisse-Díaz, Emmanouil Benetos

November 2024 | SIAM Journal on Mathematics of Data Science

Topological Fingerprints for Audio Identification

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, Mariano Beguerisse-Díaz

October 2024 | CIKM

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

A. Ghazimatin, E. Garmash, G. Penha, K. Sheets, M. Achenbach, O. Semerci, R. Galvez, M. Tannenberg, S. Mantravadi, D. Narayanan, O. Kalaydzhyan, D. Cole, B. Carterette, A. Clifton, P. N. Bennett, C. Hauff, M. Lalmas-Roelleke