Podcast Metadata and Content: Episode Relevance and Attractiveness in Ad Hoc Search

Abstract

Rapidly growing online podcast archives contain diverse content on a wide range of topics. These archives form an important resource for entertainment and professional use, but their value can only be realized if users can rapidly and reliably locate content of interest. Search for relevant content can be based on metadata provided by content creators, but also on transcripts of the spoken content itself. Excavating relevant content from deep within these audio streams for diverse types of information needs requires varying the approach to systems prototyping. We describe a set of diverse podcast information needs and different approaches to assessing retrieved content for relevance. We use these information needs in an investigation of the utility and effectiveness of these information sources. Based on our analysis, we recommend approaches for indexing and retrieving podcast content for ad hoc search.

Related

August 2021 | KDD

Neural Instant Search for Music and Podcast

Helia Hashemi, Aasish Pappu, Mi Tian, Praveen Ravichandran, Mounia Lalmas, Ben Carterette

July 2021 | SIGIR

Current Challenges and Future Directions in Podcast Information Access

Rosie Jones, Hamed Zamani, Markus Schedl, Ching-Wei Chen, Sravana Reddy, Ann Clifton, Jussi Karlgren, Helia Hashemi, Aasish Pappu, Zahra Nazari, LongQi Yang, Oguz Semerci, Hugues Bouchard, Ben Carterette

April 2021 | The Web Conference

Where To Next? A Dynamic Model of User Preferences

Francesco Sanna Passino, Lucas Maystre, Dmitrii Moor, Ashton Anderson, Mounia Lalmas