Podcast Metadata and Content: Episode Relevance and Attractiveness in Ad Hoc Search

Abstract

Rapidly growing online podcast archives contain diverse content on a wide range of topics. These archives form an important resource for entertainment and professional use, but their value can only be realized if users can rapidly and reliably locate content of interest. Search for relevant content can be based on metadata provided by content creators, but also on transcripts of the spoken content itself. Excavating relevant content from deep within these audio streams for diverse types of information needs requires varying the approach to systems prototyping. We describe a set of diverse podcast information needs and different approaches to assessing retrieved content for relevance. We use these information needs in an investigation of the utility and effectiveness of these information sources. Based on our analysis, we recommend approaches for indexing and retrieving podcast content for ad hoc search.

Related

April 2022 | The Web Conference (WWW)

Sequential Recommendation via Stochastic Self-Attention

Ziwei Fan, Zhiwei Liu, Alice Wang, Zahra Nazari, Lei Zheng, Hao Peng, Philip S. Yu

April 2022 | The Web Conference (WWW)

Using Survival Models to Estimate Long-Term Engagement in Online Experiments

Praveen Chandar, Brian St. Thomas, Lucas Maystre, Vijay Pappu, Roberto Sanchis-Ojeda, Tiffany Wu, Ben Carterette, Mounia Lalmas, Tony Jebara

April 2022 | The Web Conference (WWW)

Choice of Implicit Signal Matters: Accounting for User Aspirations in Podcast Recommendations

Zahra Nazari, Praveen Chandar, Ghazal Fazelnia, Catie Edrwards, Ben Carterette, Mounia Lalmas