Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling


Convolutional neural networks (CNNs) with dilated filters such as the Wavenet or the Temporal Convolutional Network (TCN) have shown good results in a variety of sequence modelling tasks. While their receptive field grows exponentially with the number of layers, computing the convolutions over very long sequences of features in each layer is time and memory-intensive, and prohibits the use of longer receptive fields in practice. To increase efficiency, we make use of the “slow feature” hypothesis stating that many features of interest are slowly varying over time. For this, we use a U-Net architecture that computes features at multiple time-scales and adapt it to our auto-regressive scenario by making convolutions causal. We apply our model (“Seq-U-Net”) to a variety of tasks including language and audio generation. In comparison to TCN and Wavenet, our network consistently saves memory and computation time, with speed-ups for training and inference of over 4x in the audio generation experiment in particular, while achieving a comparable performance on real-world tasks.


October 2021 | CSCW

Let Me Ask You This: How Can a Voice Assistant Elicit Explicit User Feedback?

Ziang Xiao, Sarah Mennicken, Bernd Huber, Adam Shonkoff, Jennifer Thom

September 2021 | ECML-PKDD

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith Bütepage, Lucas Maystre, Mounia Lalmas

May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer