The skipping behavior of users of music streaming services and its relation to musical structure

Abstract

The behavior of users of music streaming services is investigated from the point of view of the temporal dimension of individual songs. Specifically, the main object of the analysis is the point in time within a song at which users stop listening and start streaming another song (“skip”). The main contribution of this study is the ascertainment of a correlation between the distribution in time of skipping events and the musical structure of songs. It is also shown that such distribution is not only specific to the individual songs, but also independent of the cohort of users and date of observation. Finally, user behavioral data is used to train a predictor of the musical structure of a song solely from its acoustic content; it is shown that the use of such data, available in large quantities to music streaming services, yields significant improvements in accuracy over the customary fashion of training this class of algorithms, in which only smaller amounts of hand-labeled data are available.

Related

June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

March 2023 | CLeaR - Causal Learning and Reasoning

Non-parametric identifiability and sensitivity analysis of synthetic control models

Jakob Zeitler, Athanasios Vlontzos, Ciarán Mark Gilligan-Lee

March 2023 | CLeaR - Causal Learning and Reasoning

Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding

Graham Van Goffrier, Lucas Maystre, Ciarán Mark Gilligan-Lee