Translation, Tracks & Data: an Algorithmic Bias Effort in Practice

Abstract

Potential negative outcomes of machine learning and algorithmic bias have gained deserved attention. However, there are still relatively few standard processes to assess and address algorithmic biases in industry practice. Practical tools that integrate into engineers’ workflows are needed. As a case study, we present two tooling efforts to create tools for teams in practice to address algorithmic bias. Both intend to increase understanding of data, models, and outcome measurement decisions. We describe the development of 1) a prototype checklist based on existing literature frameworks; and 2) dashboarding for quantitatively assessing outcomes at scale. We share both technical and organizational lessons learned on checklist perceptions, data challenges and interpretation pitfalls.

Related

October 2024 | Journal of Online Trust & Safety

Algorithmic Impact Assessments at Scale: Practitioners’ Challenges and Needs

Amar Ashar, Karim Ginena, Maria Cipollone, Renata Barreto, Henriette Cramer

June 2024 | ICWSM

Socially-Motivated Music Recommendation

Ben Lacker, Samuel Way