What Makes a Good Podcast Summary?

Abstract

Abstractive summarization of podcasts is motivated by the growing popularity of podcasts and the needs of their listeners. Podcasting is a markedly different domain from news and other media that are commonly studied in the context of automatic summarization. As such, the qualities of a good podcast summary are yet unknown. Using a collection of podcast summaries produced by different algorithms alongside human judgments of summary quality obtained from the TREC 2020 Podcasts Track, we study the correlations between various automatic evaluation metrics and human judgments, as well as the linguistic aspects of summaries that result in strong evaluations.

Related

March 2023 | Frontier on Big Data: Recommender Systems

A Survey on Multi-objective Recommender Systems

Dietmar Jannach and Himan Abdollahpouri

March 2023 | Nature Machine Intelligence

Estimating categorical counterfactuals via deep twin networks

Athanasios Vlontzos, Bernhard Kainz, Ciarán M. Gilligan-Lee

March 2023 | Intelligent User Interfaces (IUI)

Enabling Goal-Focused Exploration of Podcasts in Interactive Recommender Systems

Yu Liang, Aditya Ponnada, Paul Lamere, Nediyana Daskalova