When the Music Stops: Tip-of-the-Tongue Retrieval for Music


We present a study of Tip-of-the-tongue (ToT) retrieval for music, where a searcher is trying to find an existing music entity, but is unable to succeed as they cannot accurately recall important identifying information. ToT information needs are characterized by complexity, verbosity, uncertainty, and possible false memories. We make four contributions. (1) We collect a dataset of 2,278 information needs and ground truth answers. (2) We introduce a schema for these information needs and show that they often involve multiple modalities encompassing several Music IR sub-tasks such as lyric search, audio-based search, audio fingerprinting, and text search. (3) We underscore the difficulty of this task by benchmarking a standard text retrieval approach on this dataset. (4) We investigate the efficacy of query reformulations generated by a LLM, and show that they are not as effective as simply employing the entire information need as a query–leaving several open questions for future research.


September 2023 | RecSys

Accelerating Creator Audience Building through Centralized Exploration

Buket Baran, Guilherme Dinis Junior, Antonina Danylenko, Olayinka S. Folorunso, Gösta Forsum, Maksym Lefarov, Lucas Maystre, Yu Zhao

July 2023 | SIGIR

Hear Me Out: A Study on the Use of the Voice Modality for Crowdsourced Relevance Assessments

Nirmal Roy, Agathe Balayn, David Maxwell, Claudia Hauff.

July 2023 | SIGIR Industry

Bootstrapping Query Suggestions in Spotify’s Instant Search System

Alva Liu, Humberto Corona Pampin, Enrico Palumbo