Stochastic Variational Inference for Dynamic Correlated Topic Models

Abstract

Correlated topic models (CTM) are useful tools for statistical analysis of documents. They explicitly capture the correlation between topics associated with each document. We propose an extension to CTM that models the evolution of both topic correlation and word co-occurrence over time. This allows us to identify the changes of topic correlations over time, e.g., in the machine learning literature, the correlation between the topics “stochastic gradient descent” and “variational inference” increased in the last few years due to advances in stochastic variational inference methods. Our temporal dynamic priors are based on Gaussian processes (GPs), allowing us to capture diverse temporal behaviours such as smooth, with long-term memory, temporally concentrated, and periodic. The evolution of topic correlations is modeled through generalised Wishart processes (GWPs). We develop a stochastic variational inference method, which enables us to handle large sets of continuous temporal data. Our experiments applied to real world data demonstrate that our model can be used to effectively discover temporal patterns of topic distributions, words associated to topics and topic relationships.

Related

October 2021 | CSCW

Let Me Ask You This: How Can a Voice Assistant Elicit Explicit User Feedback?

Ziang Xiao, Sarah Mennicken, Bernd Huber, Adam Shonkoff, Jennifer Thom

September 2021 | ECML-PKDD

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith Bütepage, Lucas Maystre, Mounia Lalmas

May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer