Automatic Music Transcription – An Overview

Abstract

The capability of transcribing music audio into music notation is a fascinating example of human intelligence. It involves perception (analyzing complex auditory scenes), cognition (recognizing musical objects), knowledge representation (forming musical structures), and inference (testing alternative hypotheses). Automatic music transcription (AMT), i.e., the design of computational algorithms to convert acoustic music signals into some form of music notation, is a challenging task in signal processing and artificial intelligence. It comprises several subtasks, including multipitch estimation (MPE), onset and offset detection, instrument recognition, beat and rhythm tracking, interpretation of expressive timing and dynamics, and score typesetting.

Related

July 2020 | IJCAI - International Joint Conference on Artificial Intelligence

Seq-U-Net: A One-Dimensional Causal U-Net for Efficient Sequence Modelling

Daniel Stoller, Mi Tian, Sebastian Ewert, and Simon Dixon

July 2020 | WCCI/IJCNN - IEEE World Congress on Computational Intelligence / International Joint Conference on Neural Networks

Using a Neural Network Codec Approximation Loss to Improve Source Separation Performance in Limited Capacity Networks

Ishwarya Ananthabhotla, Sebastian Ewert, Joseph A. Paradiso

November 2019 | ISMIR

mirdata: Software for Reproducible Usage of Datasets

Rachel M Bittner, Magdalena Fuentes, David Rubinstein, Andreas Jansson, Keunwoo Choi, Thor Kell