Machine Learning

Machine learning touches every aspect of Spotify’s business. It is used to help listeners discover content via recommendations and search, generate playlists, extract audio content-rich signals for cataloging and other content-based applications, understanding voice commands, serve ads, develop business metrics and optimization algorithms, create music with AI-assisted tools, and more. Central to these endeavors is a commitment to cultivate expertise in the latest approaches as we advance the state of the art in machine learning methodology and applications. Of particular interest are approaches in reinforcement learning, approximate inference, graphical models, causal inference, deep learning, time series modeling, and meta-model learning.

Latest Machine Learning Publications

April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas

March 2021 | WSDM

Shifting Consumption towards Diverse Content on Music Streaming Platforms

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre, Mounia Lalmas

December 2020 | NeuRIPS

Model Selection for Production System via Automated Online Experiments

Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Benjamin Carterette, Mounia Lalmas

Other Research Areas