Deep Learning for Audio-Based Music Classification and Tagging

Abstract

Over the last decade, music-streaming services have grown dramatically. Pandora, one company in the field, has pioneered and popularized streaming music by successfully deploying the Music Genome Project [1] (https://www.pandora.com/about/mgp) based on human-annotated content analysis. Another company, Spotify, has a catalog of over 40 million songs and over 180 million users as of mid-2018 (https://press.spotify.com/us/about/), making it a leading music service provider worldwide. Giant technology companies such as Apple, Google, and Amazon have also been strengthening their music service platforms. Furthermore, artificial intelligence speakers, such as Amazon Echo, are gaining popularity, providing listeners with a new and easily accessible way to listen to music.

Related

April 2025 | 2024 IEEE Spoken Language Technology Workshop (SLT)

Classification Of Spontaneous And Scripted Speech For Multilingual Audio

Shahar Elisha, Andrew McDowell, Mariano Beguerisse-Díaz, Emmanouil Benetos

November 2024 | SIAM Journal on Mathematics of Data Science

Topological Fingerprints for Audio Identification

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, Mariano Beguerisse-Díaz

October 2024 | CIKM

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

A. Ghazimatin, E. Garmash, G. Penha, K. Sheets, M. Achenbach, O. Semerci, R. Galvez, M. Tannenberg, S. Mantravadi, D. Narayanan, O. Kalaydzhyan, D. Cole, B. Carterette, A. Clifton, P. N. Bennett, C. Hauff, M. Lalmas-Roelleke