Identifying New Podcasts with High General Appeal Using a Pure Exploration Infinitely-Armed Bandit Strategy

Abstract

Podcasting is an increasingly popular medium for entertainment and discourse around the world, with tens of thousands of new podcasts released on a monthly basis. We consider the problem of identifying from these newly-released podcasts those with the largest potential audiences so they can be considered for personalized recommendation to users. We first study and then discard a supervised approach due to the inadequacy of either content or consumption features for this task, and instead propose a novel non-contextual bandit algorithm in the fixed-budget infinitely-armed pure-exploration setting. We demonstrate that our algorithm is well-suited to the best-arm identification task for a broad class of arm reservoir distributions, out-competing a large number of state-of-the-art algorithms. We then apply the algorithm to identifying podcasts with broad appeal in a simulated study, and show that it efficiently sorts podcasts into groups by increasing appeal while avoiding the popularity bias inherent in supervised approaches.

Related

June 2024 | ICWSM

Socially-Motivated Music Recommendation

Ben Lacker, Samuel Way

May 2024 | Yijun Tian, Maryam Aziz, Alice Wang, Enrico Palumbo and Hugues Bouchard

Structural Podcast Content Modeling with Generalizability

Yijun Tian, Maryam Aziz, Alice Wang, Enrico Palumbo and Hugues Bouchard

May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou