Large-scale user modeling with recurrent neural networks for music discovery on multiple time scales


The amount of content on online music streaming platforms is immense, and most users only access a tiny fraction of this content. Recommender systems are the application of choice to open up the collection to these users. Collaborative filtering has the disadvantage that it relies on explicit ratings, which are often unavailable, and generally disregards the temporal nature of music consumption. On the other hand, item co-occurrence algorithms, such as the recently introduced word2vec-based recommenders, are typically left without an effective user representation. In this paper, we present a new approach to model users through recurrent neural networks by sequentially processing consumed items, represented by any type of embeddings and other context features. This way we obtain semantically rich user representations, which capture a user’s musical taste over time. Our experimental analysis on large-scale user data shows that our model can be used to predict future songs a user will likely listen to, both in the short and long term.


June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

May 2023 | TheWebConf

Improving Content Retrievability in Search with Controllable Query Generation

Gustavo Penha, Enrico Palumbo, Maryam Aziz, Alice Wang, and Hugues Bouchard

March 2023 | CLeaR - Causal Learning and Reasoning

Non-parametric identifiability and sensitivity analysis of synthetic control models

Jakob Zeitler, Athanasios Vlontzos, Ciarán Mark Gilligan-Lee