Learning a large scale vocal similarity embedding for music

Abstract

This work describes an approach for modeling singing voice at scale by learning lowdimensional vocal embeddings from large collections of recorded music. We derive embeddings for different representations of the voice with genre labels. We evaluate on both objective (ranked retrieval) and subjective (perceptual evaluation) tasks. We conclude with a summary of our ongoing effort to crowdsource vocal style tags to refine our model.

Related

April 2025 | 2024 IEEE Spoken Language Technology Workshop (SLT)

Classification Of Spontaneous And Scripted Speech For Multilingual Audio

Shahar Elisha, Andrew McDowell, Mariano Beguerisse-Díaz, Emmanouil Benetos

November 2024 | SIAM Journal on Mathematics of Data Science

Topological Fingerprints for Audio Identification

Wojciech Reise, Ximena Fernández, Maria Dominguez, Heather A. Harrington, Mariano Beguerisse-Díaz

October 2024 | CIKM

PODTILE: Facilitating Podcast Episode Browsing with Auto-generated Chapters

A. Ghazimatin, E. Garmash, G. Penha, K. Sheets, M. Achenbach, O. Semerci, R. Galvez, M. Tannenberg, S. Mantravadi, D. Narayanan, O. Kalaydzhyan, D. Cole, B. Carterette, A. Clifton, P. N. Bennett, C. Hauff, M. Lalmas-Roelleke