Logistic Matrix Factorization for Implicit Feedback Data


Collaborative filtering with implicit feedback data involves recommender system techniques for analyzing relationships betweens users and items using implicit signals such as click through data or music streaming play counts to provide users with personalized recommendations. This is in contrast to collaborative filtering with explicit feedback data which aims to model these relationships using explicit signals such as user-item ratings. Since most data on the web comes in the form of implicit feedback data there is an increasing demand for collaborative filtering methods that are designed for the implicit case. In this paper we present Logistic Matrix Factorization (Logistic MF), a new probabilistic model for matrix factorization with implicit feedback. The model is simple to implement, highly parallelizable, and has the added benefit that it can model the probability that a user will prefer a specific item. Additionally, we show it to experimentally outperform the widely adopted Implicit Matrix Factorization method using a dataset composed of music listening behavior from streaming music company Spotify


June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

May 2023 | TheWebConf

Improving Content Retrievability in Search with Controllable Query Generation

Gustavo Penha, Enrico Palumbo, Maryam Aziz, Alice Wang, and Hugues Bouchard

March 2023 | CLeaR - Causal Learning and Reasoning

Non-parametric identifiability and sensitivity analysis of synthetic control models

Jakob Zeitler, Athanasios Vlontzos, Ciarán Mark Gilligan-Lee