Recommending Podcasts for Cold-Start Users Based on Music Listening and Taste

Abstract

Recommender systems are increasingly used to predict and serve content that aligns with user taste, yet the task of matching new users with relevant content remains a challenge. We consider podcasting to be an emerging medium with rapid growth in adoption, and discuss challenges that arise when applying traditional recommendation approaches to address the cold-start problem. Using music consumption behavior, we examine two main techniques in inferring Spotify users preferences over more than 200k podcasts. Our results show significant improvements in consumption of up to 50% for both offline and online experiments. We provide extensive analysis on model performance and examine the degree to which music data as an input source introduces bias in recommendations.

Related

April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas

March 2021 | WSDM

Shifting Consumption towards Diverse Content on Music Streaming Platforms

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre, Mounia Lalmas

October 2020 | CIKM

Query Understanding for Surfacing Under-served Music Content

Federico Tomasi, Rishabh Mehrotra, Aasish Pappu, Judith Bütepage, Brian Brost, Hugo Galvão, Mounia Lalmas