Recsys Challenge 2018: Automatic Music Playlist Continuation

Abstract

The ACM Recommender Systems Challenge 2018 focused on automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length, the challenge was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the Challenge, Spotify released a dataset of one million user-created playlists, along with associated metadata. Participants could submit their approaches in two tracks, i.e., main and creative tracks, where the former allowed teams to use solely the provided dataset and the latter allowed them to exploit publicly available external data too. In total, 113 teams submitted 1,228 runs in the main track; 33 teams submitted 239 runs in the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was realized by the best team.

Related

September 2020 | RecSys

Contextual and Sequential User Embeddings for Large-Scale Music Recommendation

Casper Hansen, Christian Hansen, Lucas Maystre, Rishabh Mehrotra, Brian Brost, Federico Tomasi, Mounia Lalmas

September 2020 | RecSys

Inferring the Causal Impact of New Track Releases on Music Recommendation Platforms through Counterfactual Predictions

Rishabh Mehrotra, Prasanta Bhattacharya, Mounia Lalmas

September 2020 | RecSys

Investigating Listeners’ Responses to Divergent Recommendations

Rishabh Mehrotra, Chirag Shah, Benjamin Carterette