Recsys Challenge 2018: Automatic Music Playlist Continuation

Abstract

The ACM Recommender Systems Challenge 2018 focused on automatic music playlist continuation, which is a form of the more general task of sequential recommendation. Given a playlist of arbitrary length, the challenge was to recommend up to 500 tracks that fit the target characteristics of the original playlist. For the Challenge, Spotify released a dataset of one million user-created playlists, along with associated metadata. Participants could submit their approaches in two tracks, i.e., main and creative tracks, where the former allowed teams to use solely the provided dataset and the latter allowed them to exploit publicly available external data too. In total, 113 teams submitted 1,228 runs in the main track; 33 teams submitted 239 runs in the creative track. The highest performing team in the main track achieved an R-precision of 0.2241, an NDCG of 0.3946, and an average number of recommended songs clicks of 1.784. In the creative track, an R-precision of 0.2233, an NDCG of 0.3939, and a click rate of 1.785 was realized by the best team.

Related

July 2021 | SIGIR

Podcast Metadata and Content: Episode Relevance and Attractiveness in Ad Hoc Search

Ben Carterette, Rosie Jones, Gareth Jones, Maria Eskevich, Sravana Reddy, Ann Clifton, Yongze Yu, Jussi Karlgren and Ian Soboroff

July 2021 | SIGIR

Current Challenges and Future Directions in Podcast Information Access

Rosie Jones, Hamed Zamani, Markus Schedl, Ching-Wei Chen, Sravana Reddy, Ann Clifton, Jussi Karlgren, Helia Hashemi, Aasish Pappu, Zahra Nazari, LongQi Yang, Oguz Semerci, Hugues Bouchard, Ben Carterette

May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer