Socially-Motivated Music Recommendation
Ben Lacker, Samuel Way
At the core of many important machine learning problems faced by online streaming services is a need to model how users interact with the content. These problems can often be reduced to a combination of 1) sequentially recommending items to the user, and 2) exploiting the user’s interactions with the items as feedback for the machine learning model. Unfortunately, there are no public datasets currently available that enable researchers to explore this topic. In order to spur that research, we release the Music Streaming Sessions Dataset (MSSD), which consists of approximately 150 million listening sessions and associated user actions. Furthermore, we provide audio features and metadata for the approximately 3.7 million unique tracks referred to in the logs. This is the largest collection of such track metadata currently available to the public. This dataset enables research on important problems including how to model user listening and interaction behaviour in streaming, as well as Music Information Retrieval (MIR), and session-based sequential recommendations.
Yijun Tian, Maryam Aziz, Alice Wang, Enrico Palumbo and Hugues Bouchard
Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou