Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems


Two-sided marketplaces are platforms that have customers not only on the demand side (e.g. users), but also on the supply side (e.g. retailer, artists). While traditional recommender systems focused specifically towards increasing consumer satisfaction by providing relevant content to consumers, two-sided marketplaces face the problem of additionally optimizing for supplier preferences, and visibility. Indeed, the suppliers would want a fair opportunity to be presented to users. Blindly optimizing for consumer relevance may have a detrimental impact on supplier fairness. Motivated by this problem, we focus on the trade-off between objectives of consumers and suppliers in the case of music streaming services, and consider the trade-off between relevance of recommendations to the consumer (i.e. user) and fairness of representation of suppliers (i.e. artists) and measure their impact on consumer satisfaction. We propose a conceptual and computational framework using counterfactual estimation techniques to understand, and evaluate different recommendation policies, specifically around the trade-off between relevance and fairness, without the need for running many costly A/B tests. We propose a number of recommendation policies which jointly optimize relevance and fairness, thereby achieving substantial improvement in supplier fairness without noticeable decline in user satisfaction. Additionally, we consider user disposition towards fair content, and propose a personalized recommendation policy which takes into account consumer’s tolerance towards fair content. Our findings could guide the design of algorithms powering two-sided marketplaces, as well as guide future research on sophisticated algorithms for joint optimization of user relevance, satisfaction and fairness.


October 2021 | CSCW

Let Me Ask You This: How Can a Voice Assistant Elicit Explicit User Feedback?

Ziang Xiao, Sarah Mennicken, Bernd Huber, Adam Shonkoff, Jennifer Thom

September 2021 | ECML-PKDD

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith Bütepage, Lucas Maystre, Mounia Lalmas

August 2021 | KDD

Neural Instant Search for Music and Podcast

Helia Hashemi, Aasish Pappu, Mi Tian, Praveen Ravichandran, Mounia Lalmas, Ben Carterette