Towards a Perceptual Loss: Using a Neural Network Codec Approximation as a Loss for Generative Audio Models


Generative audio models based on neural networks have led to considerable improvements across fields including speech enhancement, source separation, and text-to-speech synthesis. These systems are typically trained in a supervised fashion using simple element-wise l1 or l2 losses. However, because they do not capture properties of the human auditory system, such losses encourage modelling perceptually meaningless aspects of the output, wasting capacity and limiting performance. Additionally, while adversarial models have been employed to encourage outputs that are statistically indistinguishable from ground truth and have resulted in improvements in this regard, such losses do not need to explicitly model perception as their task; furthermore, training adversarial networks remains an unstable and slow process. In this work, we investigate an idea fundamentally rooted in psychoacoustics. We train a neural network to emulate an MP3 codec as a differentiable function. Feeding the output of a generative model through this MP3 function, we remove signal components that are perceptually irrelevant before computing a loss. To further stabilize gradient propagation, we employ intermediate layer outputs to define our loss, as found useful in image domain methods. Our experiments using an autoencoding task show an improvement over standard losses in listening tests, indicating the potential of psychoacoustically motivated models for audio generation.


May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer

April 2021 | The Web Conference

Where To Next? A Dynamic Model of User Preferences

Francesco Sanna Passino, Lucas Maystre, Dmitrii Moor, Ashton Anderson, Mounia Lalmas

April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas