Towards a Perceptual Loss: Using a Neural Network Codec Approximation as a Loss for Generative Audio Models


Generative audio models based on neural networks have led to considerable improvements across fields including speech enhancement, source separation, and text-to-speech synthesis. These systems are typically trained in a supervised fashion using simple element-wise l1 or l2 losses. However, because they do not capture properties of the human auditory system, such losses encourage modelling perceptually meaningless aspects of the output, wasting capacity and limiting performance. Additionally, while adversarial models have been employed to encourage outputs that are statistically indistinguishable from ground truth and have resulted in improvements in this regard, such losses do not need to explicitly model perception as their task; furthermore, training adversarial networks remains an unstable and slow process. In this work, we investigate an idea fundamentally rooted in psychoacoustics. We train a neural network to emulate an MP3 codec as a differentiable function. Feeding the output of a generative model through this MP3 function, we remove signal components that are perceptually irrelevant before computing a loss. To further stabilize gradient propagation, we employ intermediate layer outputs to define our loss, as found useful in image domain methods. Our experiments using an autoencoding task show an improvement over standard losses in listening tests, indicating the potential of psychoacoustically motivated models for audio generation.


April 2021 | AISTATS

Collaborative Classification from Noisy Labels

Lucas Maystre, Nagarjuna Kumarappan, Judith Bütepage, Mounia Lalmas

March 2021 | WSDM

Shifting Consumption towards Diverse Content on Music Streaming Platforms

Christian Hansen, Rishabh Mehrotra, Casper Hansen, Brian Brost, Lucas Maystre, Mounia Lalmas

December 2020 | NeuRIPS

Model Selection for Production System via Automated Online Experiments

Zhenwen Dai, Praveen Chandar, Ghazal Fazelnia, Benjamin Carterette, Mounia Lalmas