Calibrated Recommendations as a Minimum-Cost Flow Problem


Calibration in recommender systems has recently gained significant attention. In the recommended list of items, calibration ensures that the various (past) areas of interest of a user are reflected with their corresponding proportions. For instance, if a user has watched, say, 80 romance movies and 20 action movies, then it is reasonable to expect the recommended list of movies to be comprised of about 80% romance and 20% action movies as well. Calibration is particularly important given that optimizing towards accuracy often leads to the user’s minority interests being dominated by their main interests, or by a few overall popular items, in the recommendations they receive. In this paper, we propose a novel approach based on the max flow problem for generating calibrated recommendations. In a series of experiments using two publicly available datasets, we demonstrate the superior performance of our proposed approach compared to the state-of-the-art in generating relevant and calibrated recommendation lists.


May 2024 | The Web Conference

Personalized Audiobook Recommendations at Spotify Through Graph Neural Networks

Marco De Nadai, Francesco Fabbri, Paul Gigioli, Alice Wang, Ang Li, Fabrizio Silvestri, Laura Kim, Shawn Lin, Vladan Radosavljevic, Sandeep Ghael, David Nyhan, Hugues Bouchard, Mounia Lalmas-Roelleke, Andreas Damianou

May 2024 | The Web Conference (GFM workshop)

Towards Graph Foundation Models for Personalization

Andreas Damianou, Francesco Fabbri, Paul Gigioli, Marco De Nadai, Alice Wang, Enrico Palumbo, Mounia Lalmas

April 2024 | ICLR

In-context Exploration-Exploitation for Reinforcement Learning

Zhenwen Dai, Federico Tomasi, Sina Ghiassian