Calibrated Recommendations as a Minimum-Cost Flow Problem

Abstract

Calibration in recommender systems has recently gained significant attention. In the recommended list of items, calibration ensures that the various (past) areas of interest of a user are reflected with their corresponding proportions. For instance, if a user has watched, say, 80 romance movies and 20 action movies, then it is reasonable to expect the recommended list of movies to be comprised of about 80% romance and 20% action movies as well. Calibration is particularly important given that optimizing towards accuracy often leads to the user’s minority interests being dominated by their main interests, or by a few overall popular items, in the recommendations they receive. In this paper, we propose a novel approach based on the max flow problem for generating calibrated recommendations. In a series of experiments using two publicly available datasets, we demonstrate the superior performance of our proposed approach compared to the state-of-the-art in generating relevant and calibrated recommendation lists.

Related

March 2023 | Frontier on Big Data: Recommender Systems

A Survey on Multi-objective Recommender Systems

Dietmar Jannach and Himan Abdollahpouri

March 2023 | Nature Machine Intelligence

Estimating categorical counterfactuals via deep twin networks

Athanasios Vlontzos, Bernhard Kainz, Ciarán M. Gilligan-Lee

March 2023 | Intelligent User Interfaces (IUI)

Enabling Goal-Focused Exploration of Podcasts in Interactive Recommender Systems

Yu Liang, Aditya Ponnada, Paul Lamere, Nediyana Daskalova