Collaborative Classification from Noisy Labels


We consider a setting where users interact with a collection of N items on an online platform. We are given class labels possibly corrupted by noise, and we seek to recover the true class of each item. We postulate a simple probabilistic model of the interactions between users and items, based on the assumption that users interact with classes in different proportions. We then develop a message-passing algorithm that decodes the noisy class labels efficiently. Under suitable assumptions, our method provably recovers all items’ true classes in the large N limit, even when the interaction graph remains sparse. Empirically, we show that our approach is effective on several practical applications, including predicting the location of businesses, the category of consumer goods, and the language of audio content.


June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

March 2023 | CLeaR - Causal Learning and Reasoning

Non-parametric identifiability and sensitivity analysis of synthetic control models

Jakob Zeitler, Athanasios Vlontzos, Ciarán Mark Gilligan-Lee

March 2023 | CLeaR - Causal Learning and Reasoning

Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding

Graham Van Goffrier, Lucas Maystre, Ciarán Mark Gilligan-Lee