Learning a large scale vocal similarity embedding for music

Abstract

This work describes an approach for modeling singing voice at scale by learning lowdimensional vocal embeddings from large collections of recorded music. We derive embeddings for different representations of the voice with genre labels. We evaluate on both objective (ranked retrieval) and subjective (perceptual evaluation) tasks. We conclude with a summary of our ongoing effort to crowdsource vocal style tags to refine our model.

Related

June 2023 | ICASSP

Contrastive Learning-based Audio to Lyrics Alignment for Multiple Languages

Simon Durand, Daniel Stoller, Sebastian Ewert

March 2023 | CLeaR - Causal Learning and Reasoning

Non-parametric identifiability and sensitivity analysis of synthetic control models

Jakob Zeitler, Athanasios Vlontzos, Ciarán Mark Gilligan-Lee

March 2023 | CLeaR - Causal Learning and Reasoning

Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding

Graham Van Goffrier, Lucas Maystre, Ciarán Mark Gilligan-Lee