Using a Neural Network Codec Approximation Loss to Improve Source Separation Performance in Limited Capacity Networks

Abstract

A growing need for on-device machine learning has led to an increased interest in light-weight neural networks that lower model complexity while retaining performance. While a variety of general-purpose techniques exist in this context, very few approaches exploit domain-specific properties to further improve upon the capacity-performance trade-off. In this paper, extending our prior work \cite{acmmm}, we train a network to emulate the behaviour of an audio codec and use this network to construct a loss. By approximating the psychoacoustic model underlying the codec, our approach enables light-weight neural networks to focus on perceptually relevant properties without wasting their limited capacity on imperceptible signal components. We adapt our method to two audio source separation tasks, demonstrate an improvement in performance for small-scale networks via listening tests, characterize the behaviour of the loss network in detail, and quantify the relationship between performance gain and model capacity. Our work illustrates the potential for incorporating perceptual principles into objective functions for neural networks.

Related

October 2021 | CSCW

Let Me Ask You This: How Can a Voice Assistant Elicit Explicit User Feedback?

Ziang Xiao, Sarah Mennicken, Bernd Huber, Adam Shonkoff, Jennifer Thom

September 2021 | ECML-PKDD

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

Judith Bütepage, Lucas Maystre, Mounia Lalmas

May 2021 | CHI

Towards Fairness in Practice: A Practitioner-Oriented Rubric for Evaluating Fair ML Toolkits

Brianna Richardson, Jean Garcia-Gathright, Samuel F. Way, Jennifer Thom, Henriette Cramer